
R package nplr

n-parameter logistic regressions

Frederic Commo1,2 and Briant M. Bot1

1Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, Washington
2INSERM U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France

September 14, 2024

1 Introduction

1.1 Overview

In in-vitro experiments, the aim of drug response analyses is usually to estimate the drug concentration
required to reach a given cell line growth inhibition rate - typically the 50% inhibitory concentration
(IC50), which inhibits 50% of the proliferation, compared with an untreated control. This estimation
can be achieved by modeling the inhibition rate observed under a range of drug concentrations. Once
the model is fitted, the x values (drug concentrations) can be estimated from the y values (inhibition
rates) by simply inverting the function.

The most commonly used model for drug response analysis is the Richards’ equation [1], also refered to
as a 5-parameter logistic regression [2]:

y = B +
T −B[

1 + 10b(xmid−x)
]s

where B and T are the bottom and top asymptotes, and b, xmid and s are the Hill slope, the x-coordinate
at the inflexion point and an asymetric coefficient, respectively.

The nplr package is based on the full 5-parameter model, where all of the parameters are optimized,
simultaneously, using a Newton-Raphson method (nlm, R package stats). The objective function to
minimize is a weighted sum of squared errors:

sse(Y) = Σiwi.(ŷi − yi)
2, i = 1, ..., n

The weights, wi, used in the objective function can be computed using 3 possible methods, as follows:

– residuals weights: wi =
(

1
resi

)p

, i = 1, ..., n values

– standard weights: wir = 1
V ar(yr)

, r = 1, ..., r replicated conditions

– general weights: wi =
(

1
ŷi

)p

, i = 1, ..., n values

where p is a tuning parameter. The standard weights and the general weightsmethods are described
in [3, 4].

nplr provides several options in order to compute flexible weighted n-parameter logistic regression:
npars="all" can be explicitly specified, from 2 to 5, or set to all. In that case, all the possible models
are evaluated, and the optimal one is retunred, with respect to the minimal error returned by nlm.

The final model performance is estimated by a weighted and non-weighted standard error, as well as the
weighted and non-weighted goodness-of-fit:

1

– standard error: 1
(n−2) .Σi(ŷi − yi)

2, i = 1, ..., n

– weighted standard error: 1
(n−2) .Σiwi.(ŷi − yi)

2, i = 1, ..., n

– goodness-of-fit: 1− SSres

SStot

– weighted goodness-of-fit: 1− Σiwi(ŷi−yi)
2

Σi(yi−y)2

1.2 Functions in nplr

The main function is simply nplr(). It requires 2 main arguments: a vector of x and a vector of y.
Several other arguments have default values.

The npars argument allows a user to run specific n-parameter models, n from 2 to 5, while the default
value, npars="all", asks the function to test which model fits the best the data, according to a weighted
Goodness-of-Fit estimator.
In some situations, the x values may need to be log-transformed, e.g. x is provided as original drug
concentrations. In such case, setting useLog=TRUE in nplr() will apply a Log10 transformation on the
x values.

The nplr() function has been optimized for fitting curves on y-values passed as proportions of control,
between 0 to 1. If data are supplied as original response values, e.g. optic density measurements, the
convertToProp() function may be helpful. In drug-response curve fitting, a good practice consists in
adjusting the signals on a T0 and a control (Ctrl) values. Providing this values, the proportion values,
yp, are computed as:

yp =
y − T0

Ctrl − T0

where y, T0 and Ctrl are the observed values, the ’time zero’ and the ’untreated control’, respectively.

Note that if neither T0 nor Ctrl are provided, convertToProp() will compute the proportions with
respect to the min and max of y. In that case, the user should be aware that y = 0.5 may not
correspond to a IC50, but rather to a EC50 (the half-effect between the maximum and the minimum of
the observed effects).

In a drug-response (or progression) curve fitting context, typical needs are to invert the function in
order to estimate the x value, e.g. the IC50, given a y value, e.g. the 0.5 survival rate. To do so, the
implemented getEstimates() method takes 2 arguments: the model (an instance of the class nplr), and
one (or a vector of) target(s). getEstimates() returns the corresponding x values and their estimated
confidence intervals, as specified by conf.level.

2 Examples

The examples below use some samples of the NCI-60 Growth Inhibition Data. The full data can be
downloaded at [5]. For the purpose of the demonstration, the supplied drug concentrations have been
re-exponentiated.

2.1 Example 1

2.1.1 Fitting a model

> require(nplr)

The first example fits a simple drug-response curve: the PC-3 cell line treated with Thioguanine, 19
points without replicates.

> path <- system.file("extdata", "pc3.txt", package="nplr")

> pc3 <- read.delim(path)

> np1 <- nplr(x=pc3$CONC, y=pc3$GIPROP)

2

Testing pars...

The 5-parameters model showed better performance

Calling the object returns the fitting summary for the model.

> np1

Instance of class nplr

Call:

nplr(x = pc3$CONC, y = pc3$GIPROP)

weights method: residuals

5-P logistic model

Bottom asymptote: 0.0001829686

Top asymptote: 0.9964906

Inflexion point at (x, y): -5.850105 0.6270841

Goodness of fit: 0.9944421

Weighted Goodness of fit: 0.9998545

Standard error: 0.02699085 0.01800317

2.1.2 Visualizing the model

A specific plot() function has been implemented in order to visualize the results.

> plot(np1, cex.main = 1.2,

+ main="PC-3 cell line. Response to Thioguanine")

−8 −7 −6 −5 −4

0.
2

0.
4

0.
6

0.
8

1.
0

PC−3 cell line. Response to Thioguanine

x

y

GOF: 9.944e−01
Weighted GOF: 9.999e−01

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

3

This function has several predefined graphical parameters, and some of them can be overwritten. How-
ever, a convenient way to draw simplest or customized plots is shown in the example below:

> plot(np1, pcol="grey40", lcol="skyblue1", showEstim=.5, showInfl=TRUE,

+ main="Default 'nplr' plot", cex.main=1.5)

> x1 <- getX(np1); y1 <- getY(np1)

> x2 <- getXcurve(np1); y2 <- getYcurve(np1)

> plot(x1, y1, pch=15, cex=2, col="tan1", xlab=expression(Log[10](conc)),

+ ylab="Prop", main="Custom plot", cex.main=1.5)

> lines(x2, y2, lwd=5, col="seagreen4")

−8 −7 −6 −5 −4

0.
2

0.
4

0.
6

0.
8

1.
0

Default 'nplr' plot

x

y

GOF: 9.944e−01
Weighted GOF: 9.999e−01

IC50 : 2.5e−06
[2e−06, 3.2e−06]

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

−8 −7 −6 −5 −4

0.
2

0.
4

0.
6

0.
8

1.
0

Custom plot

Log10(conc)

P
ro

p

2.1.3 Accessing the performances

Once the model is built, several accessor functions allow to get access to the performances of the model,
and its parameters.

> getGoodness(np1)

$gof

[1] 0.9944421

$wgof

[1] 0.9998545

> getStdErr(np1)

stdErr weighted stdErr

0.02699085 0.01800317

> getPar(np1)

$npar

[1] 5

$params

bottom top xmid scal s

1 0.0001829686 0.9964906 -6.182545 -1.428009 0.3351753

Here, the 5-parameter model have been chosen as it showed better performances, according to the
goodness-of-fit (npar=5). The optimal values for the parameters are reported in params.

4

2.1.4 Estimating the drug concentrations

The purpose of such fitting is to estimate the response to the drug. To do so, nplr provides 2 estimates:
the area under the curve (AUC), and the drug concentration for a given response to reach.

The getAUC() function returns the area under the curve (AUC) estimated by the trapezoid rule and the
Simpson’s rule, while getEstimates() invert the function and returns the estimated concentration for
a given response. If no target is specified, the default output is a table of the x values corresponding to
responses from 0.9 to 0.1.

> getAUC(np1)

trapezoid Simpson

1 2.507094 2.527395

> getEstimates(np1)

y x.025 x x.975

1 0.9 1.910835e-07 3.181425e-07 4.528731e-07

2 0.8 4.745814e-07 6.223619e-07 7.934067e-07

3 0.7 8.222655e-07 1.017702e-06 1.253866e-06

4 0.6 1.299943e-06 1.593305e-06 1.949929e-06

5 0.5 2.020925e-06 2.522415e-06 3.154638e-06

6 0.4 3.308691e-06 4.219736e-06 5.575335e-06

7 0.3 5.855985e-06 7.916253e-06 1.120117e-05

8 0.2 1.223520e-05 1.873892e-05 3.241415e-05

9 0.1 3.676134e-05 8.030162e-05 2.959219e-04

A single value (a target), or a vector of values, can be passed to getEstimates(), and a confidence level
can be specified (by default, conf.level is set to .95).

> getEstimates(np1, .5)

y x.025 x x.975

1 0.5 2.027702e-06 2.522415e-06 3.149284e-06

> getEstimates(np1, c(.25, .5, .75), conf.level=.90)

y x.05 x x.95

1 0.25 8.663672e-06 1.168667e-05 1.655089e-05

2 0.50 2.100975e-06 2.522415e-06 3.043553e-06

3 0.75 6.656997e-07 8.041128e-07 9.611516e-07

2.2 Example 2

The next example analyses a drug-response experiment with replicated drug concentrations: the MCF-7
cell line treated with Irinotecan.

> path <- system.file("extdata", "mcf7.txt", package="nplr")

> mcf7 <- read.delim(path)

> np2 <- nplr(x=mcf7$CONC, y=mcf7$GIPROP)

Testing pars...

The 5-parameters model showed better performance

> plot(np2, showSDerr = TRUE, lwd = 4 , cex.main=1.25,

+ main="Cell line MCF-7. Response to Irinotecan")

5

−8 −7 −6 −5 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell line MCF−7. Response to Irinotecan

x

y

GOF: 9.157e−01
Weighted GOF: 9.992e−01

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

As there are replicates, we can compare the effect of the different weighted methods: the default method
is residuals weights, "res". A no-weight condition can be tested by setting the LPweight argument
to 0: The vector of weights is then just a vector of 1’s.

> x <- mcf7$CONC

> y <- mcf7$GIPROP

> noweight <- nplr(x, y, LPweight=0, silent=TRUE)

> sdw <- nplr(x, y, method="sdw", silent=TRUE)

> gw <- nplr(x, y, method="sdw", LPweight=1.5, silent=TRUE)

> plot(np2, showEstim=.5, main="residuals weights")

> plot(noweight, showEstim=.5, main="No weight")

> plot(sdw, showEstim=.5, main="Stdev weights")

> plot(noweight, showEstim=.5, main="general weights")

6

−8 −7 −6 −5 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

residuals weights

x

y

GOF: 9.157e−01
Weighted GOF: 9.992e−01

IC50 : 4.7e−06
[2.2e−06, 9.1e−06]

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

−8 −7 −6 −5 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No weight

x

y

GOF: 9.17e−01
Weighted GOF: 9.982e−01

IC50 : 4.7e−06
[1.9e−06, 1.1e−05]

Non−weighted 5−P logistic regr. (nplr package, version: 0.1.7)

−8 −7 −6 −5 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stdev weights

x

y

GOF: 9.17e−01
Weighted GOF: 9.989e−01

IC50 : 4.8e−06
[2.2e−06, 9.9e−06]

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

−8 −7 −6 −5 −4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

general weights

x

y
GOF: 9.17e−01
Weighted GOF: 9.982e−01

IC50 : 4.7e−06
[2e−06, 1e−05]

Non−weighted 5−P logistic regr. (nplr package, version: 0.1.7)

Note that the curves do not seem to change dramatically. However, the different weights can give different
performances.

2.3 Example 3

2.3.1 Fitting a Progression/Time model

This last example illustrates a Progression/Time experiment: these are simulated data.

> path <- system.file("extdata", "prog.txt", package="nplr")

> prog <- read.delim(path)

Here, the progression values are given in some unknown unit, and the x values are Time in hours. So we
don’t need to use a Log10 transformation. Let us assume that we have access to the T0 and the control
values. We can use convertToProp() in order to convert the y values to proportions.

> x <- prog$time

> yp <- convertToProp(prog$prog, T0 = 5, Ctrl = 102)

> np3 <- nplr(x, yp, useLog=FALSE)

Testing pars...

The 5-parameters model showed better performance

7

When progression is at stake, it may be interesting to get the coordinates of the inflexion point, as it
corresponds to the point where the slope (the progression) is maximal.

> getInflexion(np3)

x y

1 24.89083 0.8121706

> plot(np3, showInfl=TRUE, xlab="Time (hrs)", cex.main=1.5, cex.lab=1.2,

+ ylab="Prop. of control", main="Progression")

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Progression

Time (hrs)

P
ro

p.
 o

f c
on

tr
ol

GOF: 9.806e−01
Weighted GOF: 9.996e−01

Weighted 5−P logistic regr. (nplr package, version: 0.1.7)

2.3.2 Evaluating the number of parameters

When a 5-p logistic regression is used, and because of the asymetric parameter, the curve is no longer
symetrical around its inflexion point. Here is an illustration of the impact of the number of parameters
on the fitting.

> plot(x, yp, pch=19, col="grey" , cex.main=1.5, cex.lab=1.2,

+ main="The n-parameter effect", xlab="Time", ylab="Progression")

> le <- c()

> for(i in 2:5){

+ test <- nplr(x, yp, npars = i, useLog = FALSE)

+ lines(getXcurve(test), getYcurve(test), lwd = 2, col = i)

+ goodness <- getGoodness(test)

+ gof <- goodness$gof

+ le <- c(le, sprintf("%s-P: GOF=%s", i, round(gof, 4)))

+ }

> legend("bottomright", legend=le, lwd=2, col=2:5, bty="n")

8

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

The n−parameter effect

Time

P
ro

gr
es

si
on

2−P: GOF=0.9524
3−P: GOF=0.9625
4−P: GOF=0.974
5−P: GOF=0.9806

Note that the 5-P model may not be always the best choice.

2.4 Superimposing multiple curves

When multiple cell lines, or multiple compounds are compared, it can be useful to superimpose the
response curves on a single plot.

> path <- system.file("extdata", "multicell.tsv", package="nplr")

> multicell <- read.delim(path)

>

> # Computing models (to be stored in a list)

> cellsList <- split(multicell, multicell$cell)

> Models <- lapply(cellsList, function(tmp){

+ nplr(tmp$conc, tmp$resp, silent = TRUE)

+ })

>

> # Visualizing

> overlay(Models, xlab = expression(Log[10](Conc.)), ylab = "Resp.",

+ main="Superimposing multiple curves", cex.main=1.5, lwd = 3)

9

−8 −7 −6 −5 −4 −3 −2 −1

0.
0

0.
5

1.
0

1.
5

Superimposing multiple curves

Log10(Conc.)

R
es

p.

Hurrycane MummyHunter easyRider

2.5 Web-server version

nplr is available as a free online application at
https://fredcommo.shinyapps.io/curveFitter

This application is built on top of shiny and nplr, and allows a user to upload a file as the same form
as those provided as examples in the nplr package. A multicell.tsv example file is also available for
download through the App (click on Example file).
Plot and results can be exported after the models have been built.

10

Figure 1: nplr at https://fredcommo.shinyapps.io/curveFitter

3 Accessing R code

nplr R code is available on github: https://github.com/fredcommo/nplr

References

[1] Richards FJ. “A flexible growth function for empirical use.” In: J Exp Bot. 10 (1959), pp. 290–300.

[2] Giraldo J et al. “Assessing the (a)symmetry of concentration-effect curves: empirical versus mecha-
nistic models.” In: Pharmacol Ther. 95.1 (2002), pp. 21–45.

[3] Motulsky HJ and Brown RE. “Assessing the (a)symmetry of concentration-effect curves: empirical
versus mechanistic models.” In: BMC Bioinformatics 9 (2006), pp. 7–123.

[4] Laurence M. Levasseur et al. “Implications for Clinical Pharmacodynamic Studies of the Statisti-
cal Characterization of an In Vitro Antiproliferation Assay.” In: Journal of Pharmacokinetics and
Biopharmaceutics 26.6 (Dec. 1998), pp. 717–733.

[5] url: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data.

11

